- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alimpertis, Emmanouil (2)
-
Markopoulou, Athina (2)
-
Psounis, Konstantinos (2)
-
Bakopoulou, Evita (1)
-
Butts, Carter (1)
-
Butts, Carter T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to create such maps are expensive, often biased, not always reflecting the performance metrics of interest, and posing privacy risks. In this paper, we develop a unified framework for predicting cellular performance maps from limited available measurements. Our framework builds on a state-of-the-art random-forest predictor, or any other base predictor. We propose and combine three mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design quality-of-service functions (Q), including signal strength (RSRP) but also other metrics of interest to operators, such as number of bars, coverage (improving recall by 76%-92%) and call drop probability (reducing error by as much as 32%). By implicitly altering the loss function employed in learning, quality functions can also improve prediction for RSRP itself where it matters (e.g., MSE reduction up to 27% in the low signal strength regime, where high accuracy is critical). Second, we introduce weight functions (W) to specify the relative importance of prediction at different locations and other parts of the feature space. We propose re-weighting based on importance sampling to obtain unbiased estimators when the sampling and target distributions are different. This yields improvements up to 20% for targets based on spatially uniform loss or losses based on user population density. Third, we apply the Data Shapley framework for the first time in this context: to assign values (ϕ) to individual measurement points, which capture the importance of their contribution to the prediction task. This can improve prediction (e.g., from 64% to 94% in recall for coverage loss) by removing points with negative values and storing only the remaining data points (i.e., as low as 30%), which also has the side-benefit of helping privacy. We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets.more » « less
-
Alimpertis, Emmanouil; Markopoulou, Athina; Butts, Carter; Psounis, Konstantinos (, WWW '19: The World Wide Web Conference)Signal strength maps are of great importance to cellular providers for network planning and operation, however they are expensive to obtain and possibly limited or inaccurate in some locations. In this paper, we develop a prediction framework based on random forests to improve signal strength maps from limited measurements. First, we propose a random forests (RFs)-based predictor, with a rich set of features including location as well as time, cell ID, device hardware and other features. We show that our RFs-based predictor can significantly improve the tradeoff between prediction error and number of measurements needed compared to state-of-the-art data-driven predictors, i.e., requiring 80% less measurements for the same prediction accuracy, or reduces the relative error by 17% for the same number of measurements. Second, we leverage two types of real-world LTE RSRP datasets to evaluate into the performance of different prediction methods: (i) a small but dense Campus dataset, collected on a university campus and (ii) several large but sparser NYC and LA datasets, provided by a mobile data analytics company.more » « less
An official website of the United States government
